On-Board Satellite Implementation of WaveletBased Predictive Coding of Hyperspectral Images

Agnieszka Miguel*, Alex Chang*, Richard Ladner*, Scott Hauck*, Eve Riskin*

^{*} Electrical Engineering, University of Washington, Seattle

[#] Computer Science and Engineering, University of Washington, Seattle

Introduction

- Lossy image compression (SPIHT)
 - wavelet transform
 - bit plane coding
- SPIHT on hyperspectral data
 - linear prediction
- Implementation on-board the satellite
 - FPGAs

SPIHT

- Set Partitioning in Hierarchical Trees (SPIHT)
 - Said and Pearlman'96.
- Wavelet-based, state-of-the-art lossy image coder
- Progressive, bit plane-based coding (embedded bit stream)
- Coding for bit rate or Peak Signal-to-Noise Ratio (PSNR)

SPIHT

Wavelet transform

- Transform the input pixels (16-bit integers) into coefficients (real values)
- Most of the image energy is compacted into a few coefficients.

Wavelet Transformed Image

2 levels of wavelet transform

1 low resolution subband

6 detail subbands

(subbands were enhanced to show detail)

Bit plane coding

- Wavelet coefficients are transmitted in bit-plane order
- Only some of the bit planes are transmitted. This is where fidelity is lost when compression is gained.

compressed bit planes:

truncated compressed bit planes:

1 bpp

Bit plane coding

- In most significant bit planes most coefficients are 0
 - they can be coded efficiently
- Bit plane coding and decoding take significantly more time than the wavelet transform

SPIHT on hyperspectral data

- Use linear prediction to take advantage of correlation between bands:
 - predict the current band B_i from a previous band B_j
 - compute the difference D_i between the original band B_i and the predicted band P_i
 - code the differences to the same Mean-Squared Error (MSE)

$$P_{i} = a_{ij}B_{j} + b_{ij}$$

$$D_{i} = B_{i} - P_{i}$$

$$B_{i} = P_{i} + D_{i}$$

Effect of prediction on compression

- Average bit rate:
 - without prediction:

```
1.99 bpp
```

With prediction:

```
.37 bpp
```

(43 : 1 ratio)

Example band

- Band 30 predicted from band 29
 - MSE = 100
 - Original 16 bpp
 - Without prediction 4.37 bpp (3.7 : 1 ratio)
 - With prediction 1.1 bpp (14.6 : 1 ratio)

Original

Decoded

Prediction study

- Cuprite image
 - 224 bands
 - 16-bit signed integers
 - 614 pixels/line x 512 lines
- Reverse prediction order
- Results shown for MSE = 100

Prediction with SPIHT

- To predict the current band, the previous band is needed.
 - the previous band can be the original or the decompressed band
- Types of prediction:
 - open loop
 - half-open loop
 - closed loop
 - bit plane-synchronized closed loop

Open loop prediction

- Both transmitter and receiver use original band for prediction
- Not possible because the receiver cannot have the original band!

Open loop prediction

Open loop prediction

Average bit rate:

0.42 bpp(38: 1 ratio)

Average MSE:

53.73

Half-open loop prediction

- Transmitter uses original previous band for prediction
- Receiver uses previous decompressed band for prediction
- Leads to lack of synchronization between the transmitter and the receiver and large errors.

Half-open loop prediction

Half-open loop prediction

Average bit rate (same as open loop):

```
0.42 bpp(38: 1 ratio)
```

- Average MSE:
 - open loop:
 - 53.73
 - half-open loop:
 - 96502.40

Closed loop prediction

- Both transmitter and receiver use decompressed previous band for prediction.
- Most accurate method.
- Too complex for on-board application: requires the transmitter to implement the decoder, which is computationally complex.

Closed loop prediction

Closed loop prediction

- Average bit rate:
 - open loop:

0.42 bpp

(38 : 1 ratio)

closed loop:

0.55 bpp

(29: 1 ratio)

- Average MSE:
 - open loop:

53.73

closed loop:

87.09

Bit plane-synchronized closed loop

- Both transmitter and receiver use the same number of bit planes of the wavelet coded difference image of the previous band for prediction.
- The on-board transmitter is simpler:
 - It has to perform an inverse wavelet transform, but not a full decompression (zerotree decoding) as part of the prediction process.

Bit plane-synchronized closed loop

Bit plane-synchronized closed loop

- Average bit rate:
 - closed loop:

0.55 bpp(29: 1 ratio)

bit planesynchronized closed loop:

> 1.12 bpp (14:1 ratio)

- Average MSE:
 - closed loop:

87.09

bit planesynchronized closed loop:

87.15

Improvements

- Compute new prediction coefficients
- Better rate control:
 - decision to round up or down
 - thresholds (typical values: 0.1 1.0)

$$\text{if } \left| R(W_i) - R(\hat{\hat{W}}_i^k) \right| < T \left| R(W_i) - R(\hat{\hat{W}}_i^{k+1}) \right|$$

select k bit planes for prediction

else

select k+1 bit planes for prediction and transmission

Improvements

- Average bit rate:
 - bit plane-synchronized closed loop:

1.12 bpp (14 : 1 ratio)

improved bit planesynchronized closed loop:

0.65 bpp (24 : 1 ratio)

- Average MSE:
 - bit plane-synchronized closed loop: 87.15
 - improved bit-plane synchronized closed loop: 66.66

Conclusions

- Using prediction to code hyperspectral data significantly improves the compression ratio.
- Benefits of the proposed bit planesynchronized closed loop:
 - Lower computational complexity compared to the closed loop approach
 - Easier to implement on-board the satellite
 - Very good compression ratio with low MSE

Future work

- Universality
 - Study how the above results translate to other hyperspectral data
- Continue improving the bit plane-synchronized closed loop
 - Better rate control using look ahead
 - What is the influence of the current band's rate on the rate of the future band predicted by it.
- Different metric
 - Maximum error instead of MSE